DATA SHEET

Performed by Checked by

Date

26/03/2024

Three Phase Induction Motor - Squirrel Cage

Efficiency (%) Power Factor	e	: 315S/M : 175 HP (: 6 : 50 Hz : 380 V : 255 A : 1709 A : 6.7 : 97.0 A : 991 rpm : 0.90 % : 927 ft.lb : 220 % : 250 % : F : 1.25 : 121 sq.ft : N		Locked Temper Duty cy Ambien Altitude Protecti Cooling Mountir Rotation Noise le	at temperature in ion degree g method ng n ¹	: 46s (col : 80 K : S1 : -20°C to : 1000 m : IP55 : IC411 - : B3L(E)	3Y315S/M-W22 dd) 26s (hot) 0 +40°C .a.s.l. TEFC W and CCW) (A)
Output Poles Frequency Rated voltage Rated current L. R. Amperes LRC No load current Rated speed Slip Rated torque Locked rotor torque Breakdown torque Insulation class Service factor Moment of inertia (Design Output Efficiency (%) Power Factor	J) 50% 94.1 94.1 95.0	: 175 HP (: 6 : 50 Hz : 380 V : 255 A : 1709 A : 6.7 : 97.0 A : 991 rpm : 0.90 % : 927 ft.lb : 220 % : 250 % : F : 1.25 : 121 sq.ft : N	.lb	Temper Duty cy Ambien Altitude Protecti Cooling Mountir Rotation Noise Re	rature rise role totte tottemperature ion degree method ng n¹ evel² method	: 80 K : S1 : -20°C to : 1000 m : IP55 : IC411 - : B3L(E) : Both (C : 67.0 dB	o +40°C .a.s.l. TEFC W and CCW)
Poles Frequency Rated voltage Rated current L. R. Amperes LRC No load current Rated speed Slip Rated torque Locked rotor torque Breakdown torque Insulation class Service factor Moment of inertia (Design Output Efficiency (%) Power Factor	J) 50% 94.1 94.1 95.0	: 6 : 50 Hz : 380 V : 255 A : 1709 A : 6.7 : 97.0 A : 991 rpm : 0.90 % : 927 ft.lb : 220 % : 250 % : F : 1.25 : 121 sq.ft : N	.lb	Duty cy Ambien Altitude Protecti Cooling Mountir Rotation Noise le	rcle it temperature ion degree j method ing in¹ evel² j method	: 80 K : S1 : -20°C to : 1000 m : IP55 : IC411 - : B3L(E) : Both (C : 67.0 dB	o +40°C .a.s.l. TEFC W and CCW)
Poles Frequency Rated voltage Rated current L. R. Amperes LRC No load current Rated speed Slip Rated torque Locked rotor torque Breakdown torque Insulation class Service factor Moment of inertia (Design Output Efficiency (%) Power Factor	J) 50% 94.1 94.1 95.0	: 6 : 50 Hz : 380 V : 255 A : 1709 A : 6.7 : 97.0 A : 991 rpm : 0.90 % : 927 ft.lb : 220 % : 250 % : F : 1.25 : 121 sq.ft : N	.lb	Duty cy Ambien Altitude Protecti Cooling Mountir Rotation Noise le	rcle it temperature ion degree j method ing in¹ evel² j method	: -20°C to : 1000 m. : IP55 : IC411 - : B3L(E) : Both (C : 67.0 dB : Direct C	.a.s.l. TEFC W and CCW) (A)
Frequency Rated voltage Rated current L. R. Amperes LRC No load current Rated speed Slip Rated torque Locked rotor torque Breakdown torque Insulation class Service factor Moment of inertia (Design Output Efficiency (%)	J) 50% 94.1 94.1 95.0	: 380 V : 255 A : 1709 A : 6.7 : 97.0 A : 991 rpm : 0.90 % : 927 ft.lb : 220 % : 250 % : F : 1.25 : 121 sq.ft : N		Ambien Altitude Protecti Cooling Mountir Rotation Noise Re	at temperature ion degree g method ng n¹ evel² g method	: 1000 m. : IP55 : IC411 - : B3L(E) : Both (C : 67.0 dB : Direct C	.a.s.l. TEFC W and CCW) (A)
Rated voltage Rated current L. R. Amperes LRC No load current Rated speed Slip Rated torque Locked rotor torque Breakdown torque Insulation class Service factor Moment of inertia (Design Output Efficiency (%) Power Factor	J) 50% 94.1 94.1 95.0	: 255 A : 1709 A : 6.7 : 97.0 A : 991 rpm : 0.90 % : 927 ft.lb : 220 % : 250 % : F : 1.25 : 121 sq.ft : N		Altitude Protecti Cooling Mountir Rotatio Noise Is	ion degree y method ng n¹ evel² y method	: IP55 : IC411 - : B3L(E) : Both (C : 67.0 dB : Direct C	TEFC W and CCW) (A)
Rated current L. R. Amperes LRC No load current Rated speed Slip Rated torque Locked rotor torque Breakdown torque Insulation class Service factor Moment of inertia (Design Output Efficiency (%) Power Factor	J) 50% 94.1 94.1 95.0	: 255 A : 1709 A : 6.7 : 97.0 A : 991 rpm : 0.90 % : 927 ft.lb : 220 % : 250 % : F : 1.25 : 121 sq.ft : N		Cooling Mountir Rotation Noise le Starting	y method ng n¹ evel² y method	: IP55 : IC411 - : B3L(E) : Both (C : 67.0 dB : Direct C	TEFC W and CCW) (A)
L. R. Amperes LRC No load current Rated speed Slip Rated torque Locked rotor torque Breakdown torque Insulation class Service factor Moment of inertia (Design Output Efficiency (%) Power Factor	J) 50% 94.1 94.1 95.0	: 6.7 : 97.0 A : 991 rpm : 0.90 % : 927 ft.lb : 220 % : 250 % : F : 1.25 : 121 sq.ft : N		Cooling Mountir Rotation Noise le Starting	y method ng n¹ evel² y method	: B3L(E) : Both (C : 67.0 dB : Direct C	W and CCW) (A)
LRC No load current Rated speed Slip Rated torque Locked rotor torque Breakdown torque Insulation class Service factor Moment of inertia (Design Output Efficiency (%) Power Factor	J) 50% 94.1 94.1 95.0	: 97.0 A : 991 rpm : 0.90 % : 927 ft.lb : 220 % : 250 % : F : 1.25 : 121 sq.ft : N		Mountin Rotation Noise le Starting	ng n¹ evel² g method	: Both (C : 67.0 dB : Direct C	(A)
No load current Rated speed Slip Rated torque Locked rotor torque Breakdown torque Insulation class Service factor Moment of inertia (Design Output Efficiency (%) Power Factor	J) 50% 94.1 94.1 95.0	: 97.0 A : 991 rpm : 0.90 % : 927 ft.lb : 220 % : 250 % : F : 1.25 : 121 sq.ft : N		Rotation Noise le Starting	n¹ evel² g method	: Both (C : 67.0 dB : Direct C	(A)
Rated speed Slip Rated torque Locked rotor torque Breakdown torque Insulation class Service factor Moment of inertia (Design Output Efficiency (%) Power Factor	J) 50% 94.1 94.1 95.0	: 991 rpm : 0.90 % : 927 ft.lb : 220 % : 250 % : F : 1.25 : 121 sq.ft : N		Noise le Starting	evel² g method	: 67.0 dB : Direct C	(A)
Slip Rated torque Locked rotor torque Breakdown torque Insulation class Service factor Moment of inertia (Design Output Efficiency (%) Power Factor	J) 50% 94.1 94.1 95.0	: 0.90 % : 927 ft.lb : 220 % : 250 % : F : 1.25 : 121 sq.ft : N		Starting	method	: Direct C	
Rated torque Locked rotor torque Breakdown torque Insulation class Service factor Moment of inertia (Design Output Efficiency (%) Power Factor	J) 50% 94.1 94.1 95.0	: 927 ft.lb : 220 % : 250 % : F : 1.25 : 121 sq.ft : N					= 0
Locked rotor torque Breakdown torque Insulation class Service factor Moment of inertia (Design Output Efficiency (%) Power Factor	J) 50% 94.1 94.1 95.0	: 220 % : 250 % : F : 1.25 : 121 sq.ft : N		, ppiox	· ···o·g··	. 20 11 10	
Breakdown torque Insulation class Service factor Moment of inertia (Design Output Efficiency (%) Power Factor	J) 50% 94.1 94.1 95.0	: 250 % : F : 1.25 : 121 sq.ft : N					
Insulation class Service factor Moment of inertia (Design Output Efficiency (%) Power Factor	J) 50% 94.1 94.1 95.0	: F : 1.25 : 121 sq.ft : N					
Service factor Moment of inertia (Design Output Efficiency (%) Power Factor	50% 94.1 94.1 95.0	: 1.25 : 121 sq.ft : N					
Moment of inertia (Design Output Efficiency (%) Power Factor	50% 94.1 94.1 95.0	: 121 sq.ft : N 75%					
Design Output Efficiency (%) Power Factor	50% 94.1 94.1 95.0	: N					
Efficiency (%) Power Factor	94.1 94.1 95.0		100%				
Power Factor	95.0	00000	100 /0	Foundation	on loads		
Power Factor		96.0 96.0	96.0 96.1	Max. trac	tion	: 4493 lb	
	0.68 0.62	95.8	95.8				
		0.78 0.75	0.82 0.79	Max. com	Max. compression : 7335 lb		
_osses at normative	0.63	0.75	0.81		•		
	e operating p	oints (spe	ed:torque), in perc	entage of ra	ited output powe	r	
	P1 (0,9		4.4		.3	4.6	
	P2 (0,5		3.2		3.1	3.3	
	P3 (0,25;1,0)		2.5		2.4	2.6	
Losses (%)	P4 (0,9		2.9		2.8	3.0	
200000 (70)	P5 (0,5		1.8		.8	1.9	
	P6 (0,5;		1.5		.4	1.6	
	P7 (0,25		0.9		0.8	0.9	
	1.7 (0,20	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Drive end		Non drive en		
Bearing type		: 6319 C3 : WSeal : 13000 h		6316 C3 WSeal 16000 h		<u>u</u>	
Sealing	:						
Lubrication interval	:						
Lubricant amount			45 g		34 g		
Lubricant type	:			obil Polyrex			
	·			- Olyrox			
Notes:							
	es and canc	el the previ	ious one. which	These ar	e average value	s based on tests	with sinusoidal
This revision replac			,			he tolerances sti	
				MG-1.			
This revision replac must be eliminated. (1) Looking the mot		shaft end	O ID (A)	5			
must be eliminated. (1) Looking the mot	or from the s		F3dB(A)	1			
must be eliminated. (1) Looking the mot (2) Measured at 1m	or from the s	erance of					
must be eliminated. (1) Looking the mot (2) Measured at 1m (3) Approximate we	or from the s and with tolight subject	erance of					
must be eliminated. 1) Looking the mot 2) Measured at 1m 3) Approximate we manufacturing proc	or from the s and with tolinght subject	erance of					
nust be eliminated. 1) Looking the mot 2) Measured at 1m 3) Approximate we	or from the s and with tolinght subject	erance of to changes			Performed	Checked	Date

Page

1/1

Revision